
CENE 476 Proposal Presentation

Concrete Canoe Capstone Project

Team Members

Kayliegh Rice, Amit Shah, Trevion Booker, Jonathan Alvarez Rojas, Theo Greenan

Date: 12/5/2025

Introduction

• Purpose

Design and construct a successful concrete canoe in accordance with ASCE (American Society of Civil Engineers).

Stakeholders

Mark Lamer, ASCE, Pluto Jacks, TA

Location

Salt Lake City, Utah (Competition)

Background

Mix design, hull design, structural analysis, modeling, and construction will be needed to create a concrete canoe prototype. The prototype will be judged and scored at the 2026 ISWS (Intermountain Southwest Symposium) Conference.



Figure 1- 2024 Concrete Canoe Team at Competition –ASCE [5]

Task 1: Project Preparation

Task 1.1: Project Research

Task 1.2: Sponsorship/Donations

Task 1.3: Lab Safety & Clean-up

- <u>Deliverables:</u>
 - Waste Disposal & Clean-up Plan
 - Emergency Response Plan
 - Safety Data Sheets
 - PPE- hard hat, gloves, boots, safety glasses, vest

Figure 2- Required PPE for working with wet concrete [6]

Task 2: Concrete Mix Design

Task 2.1: Material Research

- <u>RFP Material Constraints</u> [5]:
 - Max unit weight: $< 80.0 \text{ lb/ft}^3$
 - c/cm ratio: < 40%
 - Aggregate volume: > 35%

• Constituents:

• Lightweight aggregate, SCM's, and Admixtures

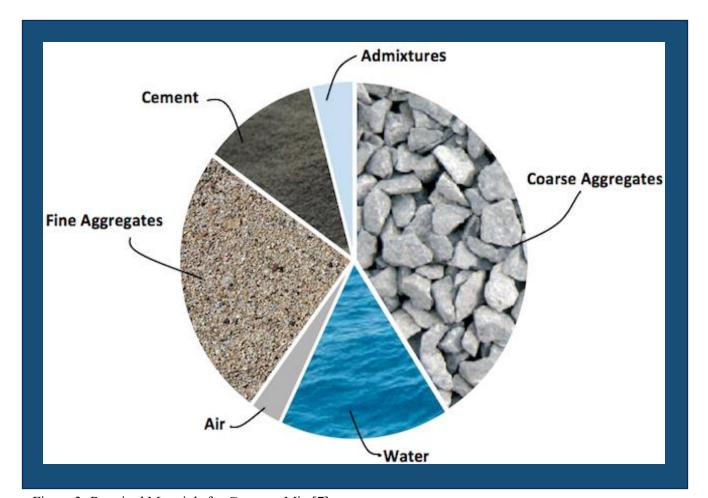


Figure 3- Required Materials for Concrete Mix [7]

Task 2.2: Material Testing

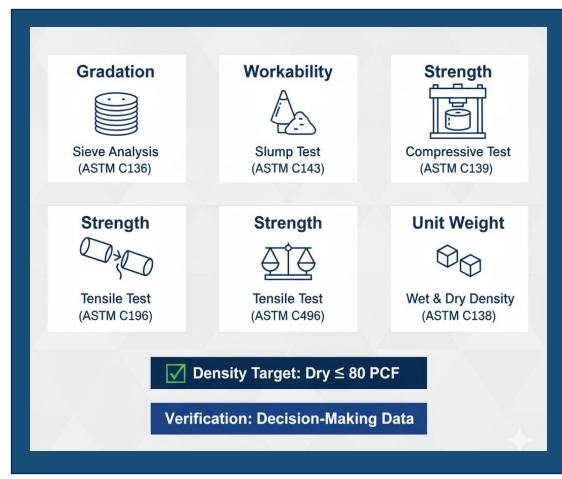


Figure 4- Material Testing to be Completed [1]

3 Mix Designs

- Compressive Strength
 - 18 Cylinders Made
 - 17-day, 214-day, 228-day, and 1 Hold for each mix
- Slump
 - 1 Slump test for each mix
 - Done on batch day for cylinders
- Gradation
 - Particle distribution curve for the aggregates of each mix
- Unit Weight
 - 1 test for each mix
- Tensile Strength
 - 18 Cylinders Made 1 7-day, 2 14-day, 2 28-day, and 1 Hold for each mix

Task 2.3: Mix Design/Decision Matrix

Figure 5- Example Concrete Cylinder Strength Testing [7]

Figure 6- Project Final Mix Selection Process [1]

Task 3: Hull Design/Decision Matrix

Task 3.1: Design Criteria and Decision Matrix

- Stability, Maneuverability, Straight-Line Speed
- Cross-section width, length, rocker curve
- Minimum 6-inches of freeboard [5]

Task 3.2: Structural Analysis

Task 3.3: 3D Finite Element Analysis

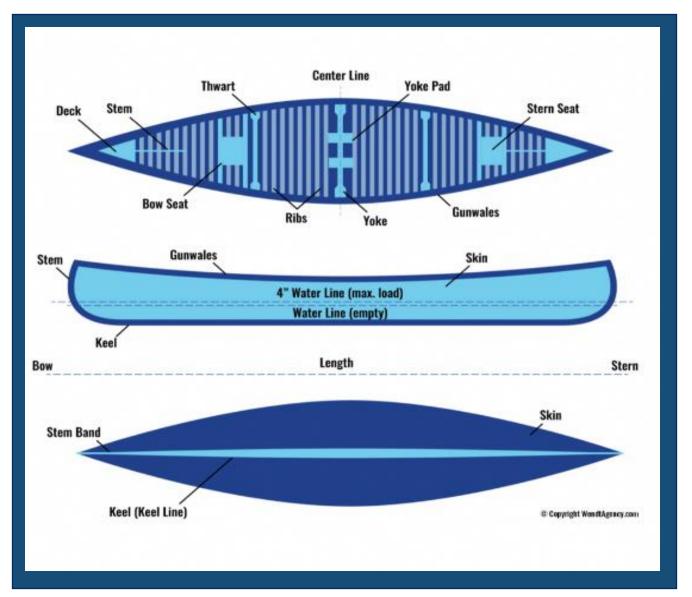


Figure 7- Hull Design Terminology [8]

Task 4: Construction/Fabrication

Task 4.1: Mold

Figure 8- Example Male Concrete Canoe Mold [5]

Task 4.2: Stand

- Stands should raise canoe 4 feet off ground [5]
- Wood construction

Task 4.3: Canoe

Task 4.3.1 Concrete Batching

- material measured by volume following mix design specifications
- mixed using a concrete mixer

Task 4.3.2 Concrete Placement

- placed over the mold using a concrete sprayer
- wire mesh reinforcement applied in layers.

Task 4.3.3 Concrete Finishing

- polished, painted, and sealed.
- blemishes due to reinforcement will be patched.

Figure 9- Finished Concrete Canoes Lined up at Competition [5]

Task 5: Competition

Task 5.1: Competition Preparation

- Rowing practices
- Mentee acquisition

Task 5.2: Transportation

- NAU trailer
- Extra cushion and a firm case for safety

Task 5.3: Presentation/Display

- 5-minute technical presentation
- Prototype display
- Relevant samples and info on the prototype.

Task 5.4: Buoyancy/Swamp Test

- Passing this test is required for the race without penalty.
- Canoe is completely submerged in the water and must float back near the water surface within two minutes

Task 5.5: Race

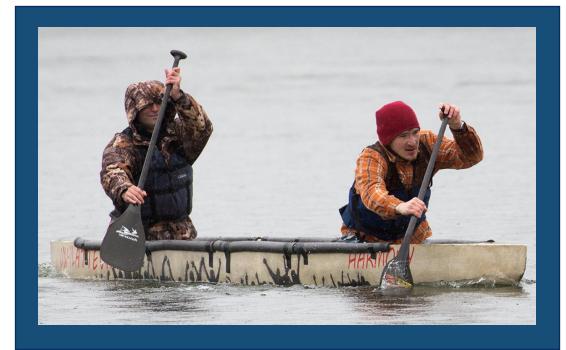


Figure 10- Concrete Canoe Race- ASCE [5]

Task 6: Project Impacts

- Economy/Society
- Environment
- Public Health

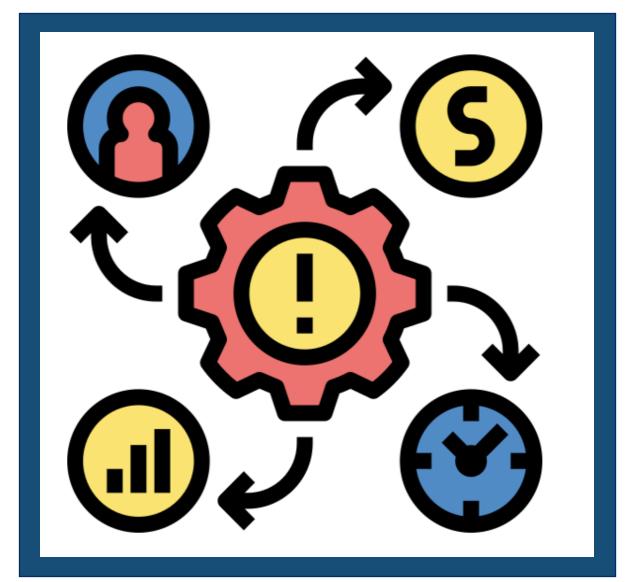


Figure 11- Project Impacts Diagram [2]

Task 7: Project Deliverables

Task 7.1: 30% Deliverables - Task 1: Project Preparation and Task 2: Concrete Mix Design

Task 7.2: 60% Deliverables - Task 3: Hull Design/Decision Matrix as well as previous tasks

Task 7.3: 90% Deliverables - Task 4: Construction/Fabrication and Task 5: Competition as well as previous tasks

Task 7.4: Final Deliverables - Task 6: Project Impacts as well as previous tasks

Task 7.5: ASCE ISWS Deliverables

• Task 7.5.1: Proposal and Qualifications Package

• Task 7.5.2: Technical Execution Package

Exclusions

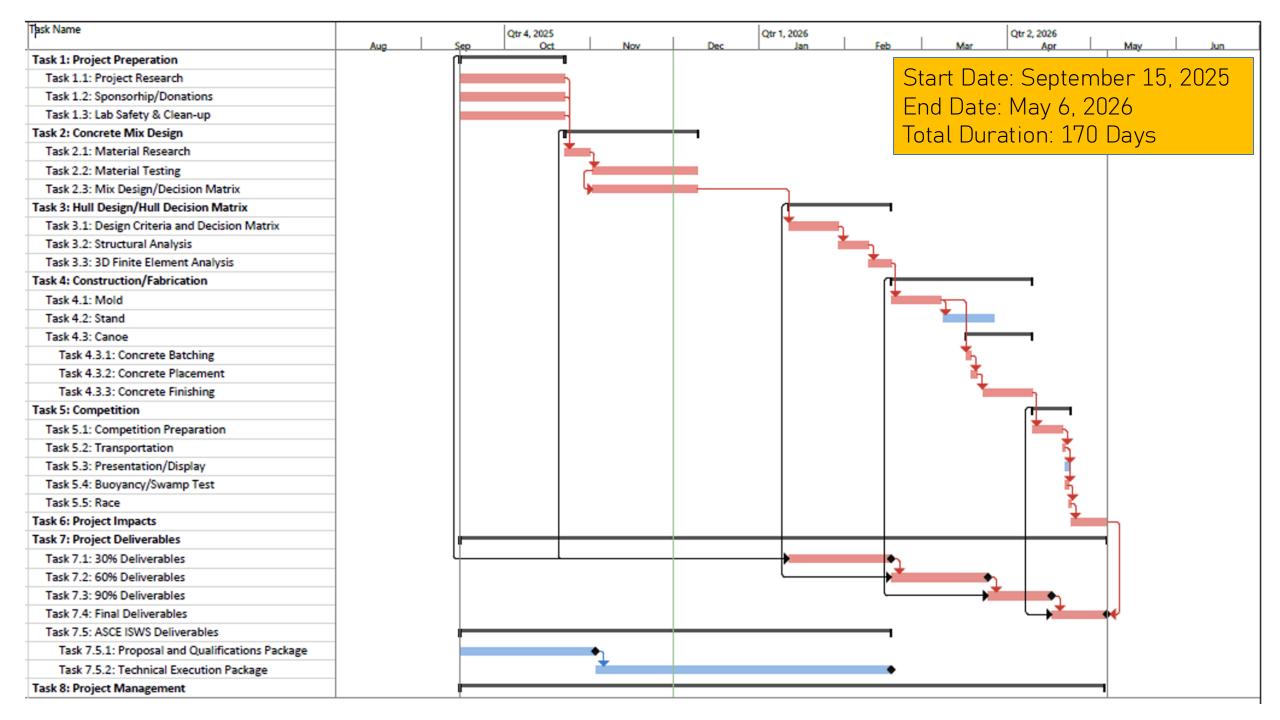
The only exclusions for this project are the full annual ASCE Student Chapter Report and Dues Payment Report, which are required for a team to participate in the ISWS competition. These will be completed by the ASCE student chapter secretary and treasurer and are not the responsibility of the Concrete Canoe Team.

Task 8: Project Management

Task 8.1: Schedule Management

Gantt Chart

Task 8.2: Resource Management


- Fund Acquisition
- Material Acquisition
- Budget

Task 8.3: Meetings

- Team (5)
- Grading Instructor (optional)
- Technical Advisor (2)
- Client (1)
- Meeting Minute Binder

Figure 12- Standard Gantt Chart [2]

Staffing Plan

Position	Abbr.	Key Qualifications	Primary Responsibilities			
Senior Engineer	SENG	At least 15 years of experience as a Structural Engineer, Licensed Professional Engineer (PE)	Technical oversight, final authority on analysis & design.			
Project Manager	РМ	At least 5 years of experience in Research and Development (R&D) and Construction Schedules, Licensed Professional Engineer (PE)	Project planning, schedule, client POC, risk and resource managment.			
Engineer in Training	EIT	Entry-level Entry-level experience with technical tasks and modeling software such as RISA, FE and SolidWorks.	Assist modeling, design, general tasks and drawings.			
Lab Technician	TECH	Experience in required standardized material testing according to ASTM standards and material procurement	Organize inventory, prepare batches, ASTM concrete testing.			
Quality Manager	QM	Experience in Quality Control/Quality Assurance (QC/QA) and reviewing technical submissions for RFP compliance	Implement QC/QA during construction, ensure guideline compliance.			

Estimated Hours

Task 4.3.4: Concrete Finishing

Task Name	SENG (Hrs)	PM (Hrs)	EIT (Hrs)	TECH (Hrs)	QM (Hrs)	Subtotal (person-hours)	Task Name	SENG (Hrs)	PM (Hrs)	EIT (Hrs)	TECH (Hrs)	QM (Hrs)	Subtotal (person- hours)
Task 1: Project Preperation							Task 5: Competition						
Task 1.1: Project Research	2	10	5	9	3		Task 5.1: Competition Preparation	2	2	3	3	3	
T 140 C 1: /D ::	4		0	0	4		Task 5.2: Transportation	0	5	8	0	0	
Task 1.2: Sponsorhip/Donations	1	3	3	0	1		Task 5.3: Presentation/Display	0	1	1	0	3	
Task 1.3: Lab Safety & Clean-up	2	2	2	1	6	50	Task 5.4: Buoyancy/Swamp Test	0	1	1	1	4	
Task 2: Concrete Mix Design							Task 5.5: Race		1	2	1	0	42
Task 2.1: Material Research	5	6	10	20	10		Task 6: Project Impacts	3	10	10	0	10	33
Task 2.2: Material Testing	5	8	10	20	15		Task 7: Project Deliverables						
Task 2.3: Mix Design/Decision							Task 7.1: 30% Deliverables	1	8	8	2	2	
Matrix	5	6	20	20	15	175	Task 7.2: 60% Deliverables	2	8	8	2	2	
Task 3: Hull Design/Structural							Task 7.3: 90% Deliverables	3	8	9	5	2	
Analysis							Task 7.4: Final Deliverables	4	9	9	4	2	
Task 3.1: Design Criteria and				_	_		Task 7.5: ASCE ISWS Deliverables						
Decision Matrix	3	4	13	3	5		Task 7.5.1: Proposal and Qualifications Package	2	1	3	1	1	
Task 3.2: Structural Analysis	7	3	12	1	5		Task 7.5.2: Technical Execution Package	3	1	3	1	1	115
Task 3.3: 3D Finite Element	_	0	10	1	_	00	Task 8: Project Management						
Analysis	5	3	10	1	5	80	Task 8.1: Schedule Management	1	2	3	0	4	
Task 4: Construction/Fabrication							Task 8.2: Resource Management	1	15	4	1	3	
Task 4.1: Mold	2	5	12	10	5		Task 8.3: Meetings	3	3	3	3	3	49
Task 4.2: Stand	0	4	10	5	5		Total Hou	rs 118	282	338	189	219	1177
Task 4.3: Canoe													
Task 4.3.1: Concrete Batching	3	4	6	10	10								
Task 4.3.2: Concrete Placement	3	4	6	10	10								

Cost of Engineering Services

1.0 Personnel	Rate, \$/Unit	Quantity	Unit	Subtotal
SENG	\$120	112	HR	\$13,440
PM	\$80	140	HR	\$11,200
EIT	\$40	200	HR	\$8,000
TECH	\$50	144	HR	\$7,200
QM	\$40	145	HR	\$5,800
Total Personnel				\$45,640
2.0 Travel				
Mileage	\$0.7/mile	1000	MILE	\$700
Van Rental	\$62/day	4	DAY	\$248
Overnight	120\$/night	8	Room-Night	\$960
3.0 Supplies				
Equipment	2,000\$	1	LS	\$2,000
Lab Rental	100\$/day	56	DAY	\$5,600
Materials	5,000\$	1	LS	\$5,000
4.0 Total				\$60,148

References

- [1] M. Salib, "Driving Concrete Sustainability with AI ProSensus Multivariate Analysis Consulting for Manufacturing," *ProSensus Multivariate Analysis Consulting for Manufacturing*, May 09, 2023. https://prosensus.com/driving-sustainability-with-ai/ (accessed Oct. 07, 2025).
- [2] Nexacu 2025, Gantt Chart. 2023. Accessed: Oct. 07, 2025. [Online]. Available: https://nexacu.com/insights-blog/how-to-make-a-gantt-chart-in-just-7-steps/
- [3] "What is ISWS?," Intermountain Southwest, https://studentsymposium.asce.org/intermountain-southwest/what-is-isws/ (accessed Nov. 24, 2025).
- [4] Google image result for https://www.google.com/imgres?q=concrete+canoe&imgurl=https%3A%2F%2Fwww.uwplatt.edu%2Fnews%2Fsites%2Fdefault%2Ffiles%2F2023-02%2FConcrete%2520Canoe%25202017_3.jpg&imgrefurl=https%3A%2F%2Fwww.uwplatt.edu%2Fnews%2Fuw-platteville-host-asce-concrete-canoe-society-wide-finals&docid=7Fg4O2cMnKsuxM&tbnid=a5n6MZaTUshU8M&vet=12ahUKEwjfiuWXyvyQAxWsJUQIHUhKPVkQM3oECCAQAA.i&w=1280&h=720&hcb=2&ved=2ahUKEwjfiuWXyvyQAxWsJUQIHUhKPVkQM3oECCAQAA (accessed Nov. 18, 2025).
- [5] 2026-ASCE-concrete-canoe-competition-request-for- ..., https://www.asce.org/-/media/asce-images-and-files/communities/students-and-younger-members/documents/2026-asce-concrete-canoe-competition-request-for-proposals-v2.pdf (accessed Nov. 25, 2025).
- [6] The power within 10 steps to concrete cylinder care, https://www.rmcao.org/wp-content/uploads/2023/08/The-Power-Within-Brochure-Final-Aug.-11.pdf (accessed Nov. 25, 2025).
- [7] Giatec Scientific Inc., "Concrete mix design just got easier," Giatec Scientific Inc., https://www.giatecscientific.com/education/concrete-mix-design-just-got-easier/ (accessed Nov. 24, 2025).
- [8] Wendtagency, "Canoe terminology," Trail Head River Sports, https://trailheadriversports.com/canoe-terminology/ (accessed Nov. 24, 2025).

Questions?

